EE 508
Lecture 16

Filter Transformations

Lowpass to Highpass
Lowpass to Band-reject

Filter Synthesis



Review from Last Time

Standard LP to BP Transformation
s'+1
s*BW
— Standard LP to BP transform is a variable mapping transform
— Maps jw axis to jw axis
— Maps LP poles to BP poles
— Preserves basic shape but warps frequency axis

— Doubles order

— Pole Q of resultant band-pass functions can be very large for
narrow pass-band

— Sequencing of frequency scaling and transformation does not
affect final function

S—



Review from Last Time

Standard LP to BP Transformation

Tipn(S)

s'+1
s*BW

Tepn(S)




Review from Last Time

tandard LP to BP Transformation
Frequency and s-domain Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)

Tipn(Sx) Tipn(Sx) Tipn(Sx)
S
S, Sx X
l | b
S sytl s’ +w?
WN SN.BWN s*BW
TLp(S) TBpN(SN) TBP(S)
S S
\L N
l s*+1 l i’
s*BW, WN
TBP(S) TBP(S)

All three approaches give same approximation

Which is most practical to use? Often none of them !
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Review from Last Time

Example 1. Obtain an approximation that meets the following specifications

N
&
\

\ \ | % : As“zﬁi

/
i
/

/
/

|

/
/
/

b
A

| I \ 2 2
ASN—\ / :*\\X\ R (UM -(L)
I I o

(actually w, and w,, that map to -1 and -wg respectively but show 1 and wg for convenience)



Review from Last Time

Example 2: Obtain an

\\

approximation that meets the following specifications
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Review from Last Time

Example 2: Obtai approximation that meets the following specifications




Filter Transformations

_OW
_OW
_OW

nass to Bandad
pass to High

PasS  (LPtoBP)
DASS  (LPto HP)

nass to Banc

-reject (LptoBR)

« Approach will be to take advantage of the results obtained for the
standard LP approximations

» Will focus on flat passband and zero-gain stop-band

transformations



Flat Passband/Stopband Filters

T(jo) T(jo)
A A
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Lowpass Bandpass
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Highpass Bandreject



LP to BS Transformation

Strategy: As was done for the LP to BP approximations, will use a variable
mapping strategy that maps the imaginary axis in the s-plane to the imaginary
axis in the s-plane so the basic shape is preserved.

e Tien (S)—>'<OuT S —)f(S) N ) Teur

Tas(S) =Tipn (f (S))




LP to BS Transformation

T(jo) T (jo)
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Standard LP to BS Transformation

Mapping Strategy:

Normalized

T (jo)

BWx

A
\

-WaN wWan

WeN

Variable Mapping Strategy to Preserve Shape of LP function:

map s=0 to s==% j=
map s=0to s=j0
map s=j1 to s=jw,
map s=j1 to s=-jwg
map s=-j1 to s=jwg
map S=-j1 to S=-jw,

Fn(s) should

—

map w=0to w =
map w=0tow =0
map w=11t0 w = w,
map w=1to w=-wg
map w= -1 to W= wg
map w=—1 to W= -w,

EV



Standard LP to BS Transformation

map w=01to w =
map w=0tow =0
map w=11to w = w,
map w=1to w=-wg
map w= -1 to w= wg
map w=—1 to W= -Wwp,




Standard LP to BS Transformation

TLPN(S) ﬂ TBSN(S)

Mapping Strategy: consider variable mapping transform

Fn(s) should

map s=0 to s== je map oofO to w f o0
map s=j1 to s=jw, = = Wp
map s:j]_ to S:-ij - map (L)_:]. to UL):_-UL)B
map s=-j1 to s=jwg map (U—_—l to w—_wB
map s=-j1 to S=-jw, map w=—1 to W= -w,

Consider variable mapping

TLPN ( FN (S)) :TBSN (S)L:s-BWN

s2+1
SeBW,

S——,
S“+1




Comparison of Transforms

LP to BP
s'+1
s*BW

S—

LP to BS
SeBW,
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Standard LP to BS Transformation

Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)

SeBW,
SX — 2
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Standard LP to BS Transformation

Un-normalized Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)
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Standard LP to BS Transformation
Pole Mappings
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Can show that the upper hp pole maps to one upper hp pole and one lower hp pole
as shown. Corresponding mapping of the lower hp pole is also shown

» Poles lie on a constant-Q line
« Zeros at =1 (normalized) or at jw,, (un-normalized) of multiplicity n



Pole Q of BS Approximations
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LP to BS Transformation
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It can be shown that
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It can be shown that
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Note for y small, Qg can get very large



Standard LP to BS Transformation
Pole Mappings

BW, \/(BWN )2_ .
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6" order LP example x X /
X
q

Note doubling of poles, addition of zeros, and likely Q enhancement



Standard LP to BS Transformation

seBW

S, —
s*+w;,

X

Standard LP to BS transformation is a variable mapping transform

Maps jw axis to jw axis in the s-plane

Preserves basic shape of an approximation but warps frequency axis

Order of BS approximation is double that of the LP Approximation

Pole Q and w, expressions are identical to those of the LP to BP transformation
Pole Q of BS approximation can get very large for narrow BW

Other variable transforms exist but the standard is by far the most popular



Filter Transformations

_OW
_OW
_OW

nass to Bandad
pass to High

PasS  (LPtoBP)
DASS  (LPto HP)

nass to Banc

-reject (LptoBR)

« Approach will also be to take advantage of the results obtained for
the standard LP approximations

» Will focus on flat passband and zero-gain stop-band

transformations



Flat Passband/Stopband Filters

T(jo) T(jo)
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LP to HP Transformation

Strategy: As was done for the LP to BP approximations, will use a variable
mapping strategy that maps the imaginary axis in the s-plane to the imaginary
axis in the s-plane so the basic shape is preserved.

1 Tien (S)—>'<OUT S —)f(S) o Tie (3) v

Tup (S) = Tien (f (s))
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LP to HP Transformation
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Standard LP to HP Transformation

Mapping Strategy:

(jo) T. (@)

Normalized

|

|

|
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Variable Mapping Strategy to Preserve Shape of LP function:

Fn(s) should

map s=0 to s=+ j= . map w=0 to W=«
map s=j1 1o s=-J1 map w=1to w=-1
map s=—1 to s=1 map w= -1 to w=1

cV



Standard LP to HP Transformation

TLPN(S) ﬂ THPN(S)

Mapping Strategy: consider variable mapping transform

Fn(s) should

map s=0 to s== |

map s=j1 to s=-j1 map w=0 to w=

map s=—j1 to s=j1 ) map w=1to w=-1
map w=-1to w=1

Consider variable mapping

TLPN ( F (S)) :TLPN (S)

1
S— =
S

1
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Comparison of Transforms
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LP to HP Transformation

(Normalized Transform)
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Standard LP to HP Transformation

Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)
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Standard LP to HP Transformation
Pole Mappings

Claim: With a variable mapping transform, the variable mapping naturally
defines the mapping of the poles of the transformed function
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Standard LP to HP Transformation
Pole Mappings

Tipn(Sy) D <« 1
Py
SX
v I py=ar+iB and py=o-jB
1
S _ 1 _aojp _ 1 _a+p
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Standard LP to HP Transformation
Pole Mappings

1

P —

Px
It py=a+|3 >2@:0‘-][3
_l_ap 17 ap
CatB at+p’ a+B o+’

Highpass poles are scaled in magnitude
but make identical angles with imaginary
axis

HP pole Q is same as LP pole Q

Order is preserved



Standard LP to HP Transformation

(Un-normalized variable mapping transform)

W
s—> -2

T(je)
1
F—————-=
|
|
|
|
|
|
|
| N >
\ 7 ~ / w
1, - A
\ 7 N~ 7/
\/ \/\
//\ / \\
\ /
// \ / RN
// \ .y S o
. \ J(U ~o
// \ HP / \\\
s
\ / ~
d \A/ o
// / ~
——————————— e RN
- 1 \ ~
x I / \ A
— I / \ —
W=- o \ W=
| / AN
/ \
oy \
[ \
| o/
i ! >
w



Filter Design
Process

Establish
Specifications

- possibly Tp(s) or Hp(z)

- magnitude and phase
characteristics or restrictions

- time domain requirements

Approximation

- obtain acceptable transfer
functions Ta(s) or Ha(z)

- possibly acceptable realizable
time-domain responses

Synthesis

- build circuit or implement algorithm
that has response close to Ta(s) or
Ha(2)

- actually realize Tr(s) or Hr(z)

Filter




Filter Design/Synthesis
Considerations

There are many different filter architectures that can realize a
given transfer function

Considerable effort has been focused over the years on
“inventing” these architectures and on determining which is
best suited for a given application



Filter Design/Synthesis Considerations

Most even-ordered designs today use one of the following three basic architectures
Cascaded Biquads

Vi Ty(s) s Tas) 1—ees T(S) e Tn(s) —VouT

Biquad Biquad Biquad Biquad

T(S) =TTy eelpy,
Leapfrog

Vi ) 12(5) _é s(s) l4(s) .. .é,|k-1(5) | s |
— Integray — Integrator Integrator — Integrator Integrator — Integrator
az

Multiple-loop Feedback (less popular)

oz ay o2 Am
O(KQ\T - T1(S) i» T2(s) i"" Tm(S) L
U Xout

_|_

XIN
Biquad Biquad Biquad

What's unique in all of these approaches?

VOUT



Filter Design/Synthesis Considerations

Most odd-ordered designs today use one of the following three basic architectures
Cascaded Biquads

Vin T1(S) T2(S) ee> Ti(S) eo Tin(S)

Biquad Biquad Biquad Biquad

T(S) = T1T2 ° .Tm
Leapfrog

v hs) () _é I5(5) 14(5) .. .é,|k-1(5) D We) | Vour
IN
— Integray — Integrator Integrator — Integrator Integrator — Integrator
az

Multiple-loop Feedback (less popular)

Qg |
O‘@ ~ Ti(s) i. T2(S) i.» Tm(S) L Tm+a(s) —

First XOUT
Biquad Biquad Biquad Order

-

_I_

XIN

What's unique in all of these approaches?



Filter Design/Synthesis Considerations

What's unique in all of these approaches?

az
(oF%
—> T(S) —> —> |(S) —> — > Tm+1(S) — % \%/
First XiN Xour
do
Biquad Integrator Order
k
_ a8’ +a;s+a, I T = &Sta, Xour = Zai
T(s) = s?+b,s+b, I(s) = i ) s+h, CE

* Most effort on synthesis can focus on synthesizing these four blocks
(the summing function is often incorporated into the Biquad or Integrator)

(the first-order block is much less challenging to design than the biquad)
« Some issues associated with their interconnections

* And, in many integrated structures, the biquads are made with integrators
(thus, much filter design work simply focuses on the design of integrators)



Biguads

How many biquad filter functions are there?

— a'O
T(s) = s’+b,s+b,
— a‘lS
T(s) = s’+b,s+b,
T(s) = 5225
s’+b,s+b,

—> T(S) —>
Biquad
T(s) = a,s’+a,;s+a,

s’+b,s+b,

T(s) = a,s’+a,;s+a,

a, =0, a, 0, a, 20
s*+h,s+h, ° ! ?

a,s’+a,

a,#0 T(s) = —2> "% a, #0, a, #0
° (s) s?+b,s+b, ° ?
a, #0 T(s):zalsi a,#0, a,#0
s“+b,s+b,
2
+
a,#0 T(s)=M a,#0,a,#0



Filter Design/Synthesis Considerations

Review: Second-order bandpass transfer function
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Filter Design/Synthesis Considerations

There are many different filter architectures that can realize a given transfer
function

Will first consider second-order Bandpass filter structures

X.N_> T (S) —>§OUT




Filter Design/Synthesis Considerations

There are many different filter architectures that can realize a given transfer function

Will first consider second-order Bandpass filter structures

Example 1:
R v
ouT
Vour _ () 1 S
Vin C— EL Vi RCSZJrS(Rle”LL%:
NV

Second-order Bandpass Filter
3 degrees of freedom

2 degrees of freedom for determining dimensionless transfer function

(impedance values scale)

="
w0, =7 0=2 BW =



Example 1:

VOUT
Vour _ (s) _ 1 S
Vin C = L Vi RC Sz_l_s(j N LZI(_:
o=\ L RC

Can realize an arbitrary stable 2" order bandpass function within a gain factor

Simple design process (sequential but not independent control of w, and Q)
If trimming is necessary, prefer to trim with a single resistor

Can’t trim this filter with single resistor



Example 2: AAAN

Vour

R1

Vin @ Cl;< “ R3

K S

=T(s)=
V, (s) RC, , El 1,1 +1-Kj+ R+R,

+
Rlcl R3C1 R3C2 R2C1 R1R2R3C1C2

Second-order Bandpass Filter

6 degrees of freedom (effectively 5 because dimensionless)
Denote as a +KRC filter

W, ="? Q=7 BW =?



Example 2: AAAA

R
R \ | Vour o
VMV 7 K Equal R, Equal C Realization
C
o 1
Vin @ c| R Vour ~T(s)= K S
A RC sz+s(4'Kj . 2
(RC)’
N




Example 2: AAAN

R
o ) o [ Vour -
/| | Equal R, Equal C Realization
C
Vin @ C T R V, K S
ouTt IT(S)Z
V, RC sz+s(4'Kj L2
i RC) (RCY
w :Q Q= \/5 BW = 4K
° RC B 4-K RC

3 degrees of freedom (effectively 2 since dimensionless)

« Can satisfy arbitrary 2"9=order BP constraints within a gain factor with this circuit

* Very simple circuit structure

 Independent control of w, and Q but requires tuning more than one component

« Can actually move poles in RHP by making K >4



Example 2: AAAN

R Y
VWV )| b = Unity Gain, Equal R

Ay

- G
+
VW@ Ci B R Vour =T(S): 1 S
Vin RC, s?+s [1} £+i + 2
rRllc, c, )] RCC,

Wo =7 Q=" BW = ?




Example 2: AAAN

R
R Vour
VWV )| b Unity Gain, Equal R
lc
v.N@ e T i R
V, 1 S
v ®)=Re
AV IN 1 24g {1} 7+i + 2
RIC, C, R*C,C,

J2 C, 1 |C BV\/:{&}(EJFLJ
w. = — 2 2+ 1
° RJCC, Q\/_c:l\/zc2 RIC G

Can’t trim this filter with resistor



Example 3: C,

-
Vv
\ ‘ ) ouT
7| %
R, C

K S

Vi O mwRe SH 1, 1, 1 }( 1), 1

RC, RC, R,C, 1+K)] (1+K)RR,C,C,

Second-order Bandpass Filter

5 degrees of freedom (4 effective since dimensionless)

Denote as a -KRC filter

Wy =7 Q=" BW = ?



Example 3: C

—
V
\ ‘ ) ouT
)| %
R C

Vin R

VOUT K S
=T(s)=-

Vi, (5) (1+K)RC




Example 3: C

T
\Y
\ ‘ ) ouT
7 b
R C
Vin R
J7 Equal R, Equal C Realization
Vour _ K S
Vi (s) (1+K)RC

__ 1 J1+K 3
W, = - BW =
RCJVI+K Q=—3 RC(1+K)

3 degrees of freedom (2 effective since dimensionless)

Can satisfy arbitrary 2"d=order BP constraints within a gain factor with this circuit
Very simple circuit structure

Simple design process (sequential but not independent control of w, and Q,
requires tuning of more than 1 component if Rs used)



Observation:

Ry \ | Vour Cq J‘
— VNV K
/| T
C,

\ | K Vour
+ L J |
ViN @ Cl/\ R3 R C,

These are often termed Sallen and Key filters J7

Sallen and Key introduced a host of filter structures

Sallen and Key structures comprised of summers,
RC network, and finite gain amplifiers

These filters were really ahead of their time and appeared long before
practical implementations were available

IRE TRANSACTIONS—CIRCUIT THEORY March 1955

A Practical Method of Designing RC Active Filters*

R. P. SALLENT axp E. L. KEYt}
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Stay Safe and Stay Healthy !




End of Lecture 16




